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An Introduction of 

Learned Video Compression



Learned Video Compression

 Learned video compression is the scheme built on neural networks, which can 

be used to compress videos individually.

◼ Deep schemes for random-access scenarios like playback

➢ Random Access means each group of frames (GoP) can be decoded independently, but the 

latency is longer. These schemes are usually based on frame interpolation which uses the 

before and the after frames as references to compress the current frame.

➢ Wu_ECCV2018 and Djelouah_ICCV2019 are two typical works for this scenarios.

◼ Deep schemes for low-latency scenarios like live transmission

➢ These schemes restrict the networks to use only temporally previous frames as references, and 

thus the latency can be very low.

➢ Lu_CVPR2019, Rippel_ICCV2019, and Liu_AAAI2020 are typical works for this scenarios.



Learned Video Compression

 Deep schemes for random-access scenarios：Wu_ECCV2018 [1] 

➢ Wu et al. [4] proposed a model composed of an image compression model that compresses the key

frames (Figure a), and a conditional interpolation model that compresses the remaining frames (Figure b).

[1] C.-Y. Wu, N. Singhal, and P. Kr¨ahenb¨uhl, “Video compression through image interpolation,” in ECCV, 2018, pp. 416–431.

➢ They compress all frames in a hierarchical order, as shown in this figure for 5 frames. The first and last

frames are compressed by I-frame model, and then the middle frame is compressed by one interpolation

model. Finally, the remaining two frames are compressed by another interpolation model.



Learned Video Compression

 Deep schemes for random-access scenarios： Wu_ECCV2018 [1] 

➢ However, the motion information used to

warp the before and after reconstructed

frames are extracted by traditional block-

level ME technique, i.e. the ME of H.264.

➢ Since the motion information is extracted by traditional technique and not from joint learning, the coding

performance of this method is just on par with H.264.



Learned Video Compression

 Deep schemes for random-access scenarios： Djelouah_ICCV2019 [2] 

➢ In 2019, Djelouah et al. [5] also proposed a method for interpolation-based video compression, where the

interpolation model combines motion information compression and image synthesis.

[2]Abdelaziz Djelouah, Joaquim Campos, Simone Schaub-Meyer, and Christopher Schroers. Neural inter-frame compression for video

coding. In ICCV, October 2019.

➢ As shown in this figure, the motion information is extracted by an optical flow network. Then the original

frame 𝑥, the optical flow fields (𝑓1, 𝑓2) and the warped frames (𝑤1, 𝑤2) are fed into the encoder. The

decoder directly synthesize the displacement maps ( መ𝑓1, መ𝑓2), and the blending coefficients ( ො𝛼1, ො𝛼2) to

compute the interpolated frame 𝑥𝑖𝑛𝑡𝑟𝑝 via:

➢ Finally, the residual between 𝑥 and 𝑥𝑖𝑛𝑡𝑟𝑝 is compressed by another auto-encoder which uses both

hyperprior and autoregressive model.



Learned Video Compression

 Deep schemes for random-access scenarios： Djelouah_ICCV2019 [2] 

➢ After a carefully training, this method has performed better than H.265 in PSNR at high bit-rate range,

which is the best compression performance among all learning-based methods for random-access mode.

[2]Abdelaziz Djelouah, Joaquim Campos, Simone Schaub-Meyer, and Christopher Schroers. Neural inter-frame compression for video

coding. In ICCV, October 2019.



Learned Video Compression

 Deep schemes for low-latency scenarios： Lu_CVPR2019 [3] 

➢ In CVPR2019, Lu et al. [6] proposed

a method for low-latency video

compression, where the network is

restricted to use the temporally

previous one frame as references.

[3] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong Gao. Dvc: An end-to-end deep video compression

framework. In CVPR, June 2019.

➢ Specifically, they feed the previous reference frame ො𝑥𝑡−1 and the current original frame 𝑥𝑡 into an optical

flow network to extract optical flow field as motion information 𝑣𝑡 . And then 𝑣𝑡 is compressed by an fully-

factorized auto-encoder. After that, the motion compensation network use the compressed ො𝑣𝑡 and ො𝑥𝑡−1 to

obtain the prediction signal ҧ𝑥𝑡. Finally, the residual 𝑟𝑡 between 𝑥𝑡 and ҧ𝑥𝑡 is compressed by another

hyperprior-based auto-encoder.

➢ All modules are jointly optimized by a single rate-distortion loss function:



Learned Video Compression

 Deep schemes for low-latency scenarios： Lu_CVPR2019 [3] 

➢ Their method has outperformed H.264 in PSNR and MS-SSIM and achieved similar or better compression

performance when compared with H.265 in terms of MS-SSIM.

[3] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong Gao. Dvc: An end-to-end deep video compression

framework. In CVPR, June 2019.



Learned Video Compression

 Deep schemes for low-latency scenarios： Rippel_ICCV2019 [4] 

➢ They proposed a method for low-latency video compression, where the network maintains a latent state to

accumulates temporal information through recursive updates like a RNN.

[4] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong Gao. Dvc: An end-to-end deep video compression

framework. In CVPR, June 2019.

➢ The auto-encoder is used to compress the motion information and the residual simultaneously.

➢ They also proposed a spatial rate

control algorithm to independently

assign arbitrary bitrates at different

spatial locations. It can assign more

bits to the areas that are harder to

reconstruct.

The architecture of the spatial multiplexer for rate control
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 Deep schemes for low-latency scenarios： Rippel_ICCV2019 [4] 

[4] Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson, Alexander G. Anderson, and Lubomir Bourdev. Learned video compression. In

ICCV, October 2019. 1, 2, 3, 6

➢ First, they map the spatial map of integer rates 𝑝 ∈ {1,2, … , 𝑅}𝑌𝑥𝑋 into R binary masks 𝑢𝑟 ∈ {0,1}𝐶𝑟𝑥𝑌𝑟𝑥𝑋𝑟,
via:

➢ Each map 𝑢𝑟 masks codelayer 𝑐𝑟 during entropy coding. The final bitstream then corresponds to

encodings of all the active values in each codelayer, as well as the rate mask itself.

➢ During training, they simply sample 𝑝 uniformly for each frame.

➢ During deployment, they estimate the slope of the local R-D curve for each location (y,x)

and rate r. They then choose the rate map 𝑝 such that at each location 𝑝yx is the largest rate such that

the slope is at least the predefined threshold λ.

➢ Their experimental results showed that the spatial rate controller achieved 10-20% better compression.



Learned Video Compression

 Deep schemes for low-latency scenarios： Rippel_ICCV2019 [4] 

➢ Their method has outperformed HEVC HM in terms of MS-SSIM at high bit-rate range.

[4] Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson, Alexander G. Anderson, and Lubomir Bourdev. Learned video compression. In

ICCV, October 2019. 1, 2, 3, 6



Learned Video Compression

 Deep schemes for low-latency scenarios： Liu_AAAI2020 [5] 

➢ Their model uses the one-stage flow learning and compensation, where a NLAM-based auto-encoder

learns and compresses the motion information simultaneously.

[5] Liu, Haojie, Lichao Huang, Ming Lu, Tong Chen, and Zhan Ma. "Learned Video Compression via Joint Spatial-Temporal Correlation

Exploration." arXiv preprint arXiv:1912.06348 (2019).

➢ They directly use the NLAIC method proposed in their previous work to compress the residual and intra

frame, where the NLA transform, hyper and aoutoregressive priors are all used.
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 Deep schemes for low-latency scenarios： Liu_AAAI2020 [5] 

[5] Liu, Haojie, Lichao Huang, Ming Lu, Tong Chen, and Zhan Ma. "Learned Video Compression via Joint Spatial-Temporal Correlation

Exploration." arXiv preprint arXiv:1912.06348 (2019).

➢ The entropy model of flow compression uses the adaptive contexts with fused priors, that is the

temporal priors updated by a convLSTM, the autoregressive priors learned by 3D masked Conv and

the Hyper priors.

➢ They pre-train the intra coding and flow learning and coding networks first, followed by the jointly

training with pre-trained network models for an overall optimization.
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 Deep schemes for low-latency scenarios： Liu_AAAI2020 [5] 

[5] Liu, Haojie, Lichao Huang, Ming Lu, Tong Chen, and Zhan Ma. "Learned Video Compression via Joint Spatial-Temporal Correlation

Exploration." arXiv preprint arXiv:1912.06348 (2019).

➢ From the coding results reported in the paper, we can see that their model performs better than

DVC(Lu_CVPR2019) significantly. But the comparison is unfair because DVC is optimized for MSE while

their method is optimized for MS-SSIM.
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 Deep schemes for low-latency scenarios： Ours_CVPR2020

➢ Compared with DVC(a), we newly introduce four effective modules using multiple reference frames:

multiple frame-based MV prediction, multiple frame-based motion compensation, MV refinement, and

residual refinement.

➢ We use a single rate-distortion loss function, together with a step-by-step training strategy, to jointly

optimize all the modules in our framework.

➢ Our model is optimized for MSE and uses the fully-factorized and hyperprior entropy model to compress

the MVD and residual, respectively.
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 Deep schemes for low-latency scenarios： Ours_CVPR2020

➢ Our model performs better than DVC by a large margin in both PSNR and MS-SSIM and even performs

better than Liu_AAAI2020 in MS-SSIM, although Liu_AAAI2020 is optimized for MS-SSIM and uses the

auto-encoder with much higher coding efficiency.




